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1. Phys A: Math. Gen. 25 (1992) 36214647. Printed in thc UK 

On the theory of the Larmor clock and time delay 

Ph A Martin and M Sassoli de Bianchi 
lnstilut de Physique 'IhIhCorique, Ecolc Polytechnique Federale de lausanne, CH-1015 
Lauranne, Switzerland 

Received 19 November 1991. in final form h March 1992 

AbslraeL Using lhe time-dependen1 scatlering theory we prove that, in any spatial 
dimension and far arbitrary spin, the reading of the Larmor clock agree with lhe global 
(Eisenbud-Wigner) time delay in the limit of an infinilesimal magnelic field. We show 
that convergence is also achieved at fixed energy (without oscillating terms) in lhe limit 
where the spatial swilching on of lhe field occurs on a much larger sale than the de 
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clock beyond lhe linear response regime. 
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1. Introduction 
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has been the subject of many studies, mainly motivated by the prospect of high speed 
devices based on tunnelling structures in semiconductors (see the review paper [l] 
and references therein). One of the proposals (the Larmor clock originally introduced 
in [2, 31) is to measure the duration o[ a scattering event by means of the precession 
of a spin in a weak homogeneous magnetic field. Heuristically, a constant magnetic 
fie!C 
uniform rotation, and so the total precession angle will be proportional to the. time 
elapsed during the collision process. 

This picture has been substantiated in [4] by a detailled study of the motion 
of a one-dimensional wave packet through a potential barrier in the. presence of a 
magnetic field. A freely moving wave packet first enters a region where a uniform 
magnetic field h applied, far away from the scattering centre. Then, it undergoes t h e  
scattering process in presence of the field, and finally the scattered waves leave the 
field region. By retaining in the phase of the wavefunction only the contributions that 
are linear in the field, the authors show that  the reading of the clock agrees with the 
Esenbud-Wigner time delay (sec [SI and rcfercnces therein, and [6] ,  ch 7-2), i.e. the 
derivative of the phase shift with respect to energy (also called classic Or asymptotic 
phase time). 

In [7], the authors point out the intimate relation between the linear response 
of the scattering operator to an additional external perturbation and the sojourn 
(or dwell) time for a particle in some spatial region. With this relation they can 
easily establish that the (inlinitesimal) rotation of the spin of a neutral particle is 
proportional to the sojourn time, so the difference between the precession angles 
relative to the interacting and free motion is proportional to the difference of the 
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corresponding sojourn times. Since the latter quantity converges to the Eisenbud- 
Wigner time delay for large spatial regions [5, 61, it was found that the reading 
of the clock coincides with the classical phase time for infinitesimal fields. All the 
considerations in [7] are restricted to one dimension and rely on formulae for the 
stationary scattering states formalism. 

The purpose of this work is twofold. 'Ib begin with we generalize in sections 
2 and 3 the result of [7] to all space dimensions d = 1 , 2 , 3  and arbitrary spin s 
(for a neutral or charged particle). We feel that the connection between the linear 
response of the 5'-operator and the sojourn time can be exhibited more simply and 
with greater generality by using the methods of time-dependent scattering theoryt. 
We find that in any dimension d the reading of the Larmor clock constituted by a 
(neutral or charged) particle with spin s in an infinitesimal field is always given by the 

the field region to the whole W d .  
Then, in section 4, we again consider the problem from the viewpoint of time- 

independent scattering theory with spherically symmetric potentials. When the mag- 
netic field is switched on abruptly in space (i.e. a step function), it was noted a long 
time ago that the convergence to the Eisenbud-Wigner time delay is not achieved 

the physical origin of which is the interference of reflected waves a t  the boundaries 
of the magnetic field, have been the subject of several discussions in the literature 
(see for example [4, 9, lo]). In a good spin clock, the  magnetic field should be 
responsible for the precession of the spin, but should not cause additional pertur- 
bative effects on the orbital degrees of freedom, which would interfere with those 
due to the scattering process under investigation. Our point here is that this can be 
achieved if the magnetic field is produced by a macroscopic device with the following 
properties: it extends to a region of much larger size than that of the (microscopic) 
range of the scattering potential and its spatial switching on occurs on a much larger 
scale than the de Broglie wavelength of the scattcred particle. With such a model of 
the magnetic field (precisely defined in section 4) we prove the convergence to the 
Eisenbud-Wigner time delay at l i ed  energy when the field covers the whole space 
and its gradient becomes vanishingly small in the transition region. 

So far, all the above results have been obtained in the framework of the linear 
response theory. In section S we address the problem of the functioning of the 
spin-clock, for a neutral particlc, beyond the linear response regime for the case of 
a spherically symmetric potcntia!. With the same model as in section 4 we show 
that, in the scattering operator, the magnetic Iicld results asymptotically in a phase 
factor depending only on the energy and thc spin component, but not on the angular 
momentum. Consequently, the magnetic field is transparent in the sense that it causes 
no deflection of the particle. Then we lind in a weak, but not necessarily infinitesimal 
field, when there is no dispersion in energy, that the measure of the rotation angle of 
a spin-: particle after the scattering process (relative to the free motion) still provides 
relevas information, which can he expressed in terms of finite energy differences of 
phase shifts. Oniy the h e a r  term, ,which agrces with the energy derivative of the 
phase shifts found previously, has thc legitimate interpretation of the time delay of 
the scattering process. Finally, whcn the incoming state has same non-negligible 

r . . - L . . ,  ..,! __.. _I-. .,.?-.. :.,.> .L._ __. ~..I_L .~ ._> .~~A.-2- 

!2bCIlVUU-WlgllCI LllllC UClay, ~ IUVlUCU LlldL UllC W O l l o  W l l r l  WaVC paLKClS aIlU CXICIIUI 

2: fixed eflergy becicse of the existecce of zci!!zticg terms. 3 . e~ :  Qsci!!itinm f ~ r m ~  
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dispersion in energy, one observes an attenuation of the outgoing spin vector, due to 
a spatial splitting, inside the magnetic field region, of the up and down parts of the 
incoming wave packet (relative to the field direction). 

2. Response of a scattering system to a perturbation 

We consider a quantum particle in d dimensions ( d  = 1,2,3), with kinetic energy 
If, = -h2A/2m (A is the Laplacian in Rd), which is scattered by a potential 
U(=) + Xw(z) ,  where X w ( i )  is a perturbation of ~(2); w ( z )  is supposed to be 
bounded and with compact support, X is a coupling constant in the range 1x1 < 
A, < cu. We denote by U, = exp(-iHot/h) and V,(X) = exp(-iH(X)t/h) the 

each X in the range 1x1 < A,, (H, ,H(X))  forms a complete scattering system [6] 
with wave operators 

evo!ution goup generated hy If, and H ( X )  = H ,  + ?, + Xw; we asume that for 

= s-lim t-m n+, , (A)  Q i , , ( X )  = v!,(x)~+, (2.1) 

such that Range Q + ( X )  = Range n-(X). The scattering operator is defined by 

S(A) = ~ : ( A ) Q - ( A )  = s- l ini  1-cc s,(A) 

St(X) = Q + , f  (A)n-,,(x) = ufv,,(x)u-,. 

(2.2) 

with 

(2.3) 

We would like to compute the linear response of the scattering operator to the 
perturbation Xw. For this we note that S,(A) can be easily expanded around X = 0, 
using the usual time-dependent perturbation (Dyson's) series at first order in X (the 
series converge for a bounded w )  

(2.4) c l , , p n t  1, i~ r i  ,.,,t..,,)n n, ,z, 
A&-,, i- ",* , U6 " 5  w 

- I J- ,  ailAI ' L + . f  

giving 

In (2.4) and (2.5), the operators VI = V,(O), Q,  nl(0) and S, E S,(O) refer to 
the unperturbed scattcring system ( H , ,  M = H ,  + U). Permuting the infinite time 
limit and the derivative with respect to X we obtain formally from (2.1), (2.2) and 
(2.5) the linear responsc formula 

Using Stn: = n! one can also write (2.6) in the form 

(2.7) 
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with 
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dsVJwV, R = dsUjR!.wR-U, (2.8) 

where the last equality follows from the intertwining relations V,R, = R,U,. In 
appendix A we give conditions for the validity of formulae (2.6)-(2.8). They hold for 
sufficiently regular short-ranged potentials on a dense set of states 2) and the limit 
(2.6) has to be understood in the weak sense. If w ( z )  = x n ( z )  is the characteristic 
function of the sphere of radius R, we see that 

T ( w )  = n l (11  ) - 1: 

* = n _ v  P € V  (2.9) 

is the sojourn time in the sphere of the particle scattered by the potential U and with 
incoming state p. 

3. The Larmor clock 

A neutral particle of spin s is scattered by the potential U(.) and submitted to a static 
magnetic field B ( z )  = (O,O, E , ( = ) )  applied in the d i rec t ion  on the region where 
the scattering takes place. We write the magnetic energy - f i B z ( s ) C z  (E, is the z -  
component of the spin operator and p the magnetic moment) in the form Xw(x)C, 
where W ( Z )  is a dimensionless local bounded function whose support determines the 
spatial region where the field is applied and X is a measure of the field strength (A 
has the dimension of a frequency). Specific forms of the cut-off function w ( z )  will 
be discussed in the next section. The total Hamiltonian, still denoted by H ( X ) ,  is 
H ( X )  = H,+u+XwC,. The scattering system ( H , , H ( X ) )  has wave and scattering 
operators acting on L2(Wd)  ti3 U?+* still denoted by Q,(X) and S(X). 

Let 4 = i p @  x be a normalized incoming state with orbital wavefunction p E V, 
spin state x and C a spin operator (Y may be, for example, a combination C, = 
C,&iC,,). The average value of Y after the scattering process, denoted by ( X ) O U t (  A), 
is given by 

(C)O" ' (X)  = ( S ( X ) ~ , Y S ( X ) ~ ) .  ( 3 4  

The response of (X)""'(X) to an infinitesimal ficld can be computed from (2.7) and 
(2.8) with w replaced by w Y z ,  Using the fact that S E S(0)  commute with the spin 
operators and T t ( w X , )  = T ( w Y , ) ,  wc find 

1 
= ( x , [ ~ l . ~ 1 x ) ( % T ( w ) 4  

where [ C , , C ]  denotes the commutator betwcen 
C = C, and w = l R  in (3.2), we deduce that up to the first order in X 

and Y. If, for instance, we set 

(c,)'"~(x) = (1 * ix (p ,T(xR)p) ) (Y+) ' "  + O(X?) (3.3) 
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which means that during the scattering process, the spin vector (E)'" = 
((Ez)i", (C,)'") has accomplished an infinitesimal rotation of angle 

av(xR,x) = N ~ , T ( X R ) ~ )  + 0 ( x 3 )  (3.4) 

given by the product of the Larmor frequency of the field with the sojourn time Of 
the particle in the region 111 6 R where the field is applied. If we subtract from 
a,(xR,X) the angle which would occur if the potential U is set equal to zero and 
then take the limit of an infinitly extended space region, we obtain 

= (P> TP). (3.5) 

In (3.9, the quantities with an index 0 refer to the system (R,, H ,  + x R C I )  without 
scattering potential U and T is the Eisenbud-Wigner time delay operator with energy 
shell components [6, ch 7-21 

. t TE = -IhS, - a E  

where SE is the scattering operator of the system ( H , ,  H )  at k e d  energy E (i.e. a 
unitary operator acting on L 2 ( o d - ' ) ,  the square integrable functions of the surface 
&' of the unit sphere in Rd).  More generally, for any spin observable C, one 
obtains from (32j and Q5j 

The existence of the infinite space limit, (3.5) and (3.7) for suitable wave packets 

potentials and [13] for potentials which are not necessarly rotation invariant; in the 
cnntext of one-dimensional tunnelling, see [4, 141 and also [7] where the correspond- 
ing linear response relation (2.6) can be found). Notice that the existence of the limit 
(3.5) does not require the choice W ( Z )  = x R ( z )  (corresponding to an abrupt spatial 
switching on of the magnetic field), but also holds for sequences W ( Z )  = w R ( z )  of 
smooth spherically symmetric cut-off [unctions, corresponding to a smooth switching 
on of the field, such that liinR--ouw,l(z) = 1 (e.g. [13, 15, 161). In any case there 
is a large class of potentials U and cut-off functions wR for which the limit (3.5) 
holds. We therefore see that the lincar response to a magnetic field of a scattered 
neutral particle in d dimensions with arbitrary spin s gives the Esenbud-Wigner time 
delay in the sense of formutae (3.5) and (3.7). These formulae involve three limiting 
procedures: the infinite time limit (2.2), the linearization with respect to the field 
strength and the extension of the field action to the whole space K i d .  The infinite 
time limit is required as usual to have a complete scattering event. The need for the 
existence of the last limit is justified by the request that the spin clock should provide 
intrinsic information on the scattering process, independent of the size of the region 
and the manner in which the field is applied. This limit cannot be permutcd with the 
two first ones. If the field is taken to be  constant on Rd at first (i.e. w ( z )  = 1 in 

p, has been et1!?!&Shed i!! 1 number Gf works (P& [I!, 12.j b r  sp?.crica!!y syymmetrk 
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H ( X ) ) ,  it is clear that the spin decouples from the orbital degrees of freedom and is 
not affected by the scattering process. 

We have considered, for simplicity, the case of a neutral particle. If the particle has 
a charge q, the formulae (3.2)-(3.5) remain the same. Indeed, the total Hamiltonian 
ior a charged particle has thc form 

Ph A Martin and M Sassoli de Bianchi 

where P is the momentum and A ( z )  is the potential vector (B  = V AA). Thus Xw 
has to be replaced in the linear response formula (2.6) by the part of the interaction 
which is linear in the field strength, i.e. by XwC, + ( q / Z m ) ( P .  A t A . P ) ,  but the 
contribution to (3.2) of this additional term vanishes since it commutes with the spin 
operators. 

It is worth emphasizing that in (3.1) and the subscquent discussion, we have con- 
sidered the average outgoing spin without the specification of any scattering direction. 
In particular, since C, is a constant of the motion, it commutes with S( A )  and thus 

Let Pn be the projection on some solid angle Cl in momentum space. Then, one 
can also consider the average spin whcn the outgoing particle is found in fl (in one 
dimension, the spin associated with the transmitted or reflected waves separately) i.e. 

(C,)~"t(X) = (C,)'". 

( C P * ) O Y X )  = (S(XI4, CP,S(X)+). (3.9) 

Since Pn does not commute with the scattering operator, a change of the z -  
component o i  the spin is found when the particie is detected in n. Working out 
the linear response term in this case, we obtain 

r 1/1 2X ( C , P , ) y X )  = (dz) (p,s+PcISLp) + f i (C~) ' " I I I1( /D,S+P,ST(w)~)  + O(X?). 

(3.10) 

In the context of one-dimensional scattering, this observation led Biittiker [17] to 
associate transmission and reflection times with this change in the z-component of 
the spin. The definition and pssible interpretation of these times are also discussed 
in [IS]. In the present paper, we shall only be interested in the total outgoing spin 
(3.1) and its relation to the global (Eisenbud-Wigner) time delay. 

4. The Larmor clock on the energy shell: the smooth switching on of the magnetic 
field 

In the preceding section, we have secn that in ordcr to observe a non-trivial effect of 
the scattering on the spin motion it is nccessary for thc particle to enter and leave the 
field region, however weak the field is and however large the region is. In principle, 
the dynamics of the particle should dcpend on the nature of the transition region for 
the field. It is a non-trivial result in the theory of the Eisenbud-Wigner time delay 
that, when dealing with wave packets and ultimately extending the field to the whole 
space, the limit (3.5) is in kc t  indepcndent of the dctails of this transition region (see 
references quoted after (3.7)). 
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The situation is, however, very different when one  works in the formalism of 
stationary scattering theory at fixed energy E (without averaging the energy of the 
packet). Let  W ( T )  be a spherically symmetric spatial cut-off function, and let S,(X) 
denote the scattering operator a t  fixed energy E for the system ( N o ,  If( A) )  described 
in section 2 (S,(X) acts on L 2 ( o d - ’ ) ) .  In the rest of this section we shall mainly 
be concerned with the three-dimensional scattering problem with a rotation invariant 
potential v ( r ) .  Then, S,(X) is diagonal in the basis II,nx) of eigenvectors of the 
orbital momentum, with matrix elements 

( e , 7 n ~ S E ( X ) ~ C , 7 n )  = $ ( A )  = P k ( h )  (4.1) 

expressed in terms of the phase shifts 6L(X)  in the usual way. 

obsewation that the perturbed and unperturberd phase shifts 6;(X) and 6; 
are related by [19, ch X, section 171 

The response equivalent to (2.6) in the stationary formalism follows from the 
6;(0) 

where U$( . ,  A )  is the regular solution of the radial Schrodinger equation 

with asymptotic form 

as T - ca and ut.( r )  is the corresponding solution of (4.3) with X = 0. Differenti- 
ating (4.2) with respect to X at X = 0 gives 

which are the energy shell and orbital momentum components of the operator (2.7). 
In particular, if ~ ( 7 . )  = X , ~ ( T )  (the characteristic function of the sphere of radius 
R), one recovers the well known expression of the sojourn time a t  fixed energy [5, 
101 

(4.6) 

If the Hamiltonian of section 3 is considcrcd (with spin included), the corresponding 
energy shell scattering operator S,(X) is diagonal in the basis of eigenvectors of 
C, and is simply obtained replacing w in (4.2) and (4.3) by Y z w .  In particular, the 
stationary representation of (3.2) is 



3634 Ph A Martin and M Sassoli de Bianchi 

The asymptotic behaviour of Th(xR) for large R has been studied in several 
papers (e.g. [lo] in the context of sojourn times and [Z, 31 in connection with the spin 
clock) and is given by 

An important point here is the occurrence of oscillating terms with R as R + CO. 

Because of these, the difference 

G ( XR) - To; ( X R  1 = 2 f r ~  - 2 [ s i u ( 2 k R - C x + 2  6k)-sin(2kR-f?rr)] +o(l) 
as; f i  

(4.9) 

between the full sojourn time T;(xn) and the free sojourn time To:( xR) (obtained 
by setting 6;  = 0 in (4.8)) does not converge at k e d  energy as R - CO (the oscil- 
lating terms do not compensate). This is not in contradiction with the existence of 
the limit (3.5) for wave packets; when (4.8) is averaged over a smooth energy distri- 
bution, the oscillating contribution vanishes by the Riemann-Lebesgue lemma. As a 
consequence the limit (3.5) is not uniform with respect to the choice of the incoming 
packet; the better the energy definition of the incoming beam, the wider the field 
region must be. In fact the oscillating terms in (4.8) have a clear physical origin which 
is discussed in [9] (three-dimensional scattering) and [4] (one-dimensional problem). 
They result from interferences due to reflected waves at the sharp frontiers of the 
magnetic field (described as a step potential). These interference terms remain at the  
linear order in the field. It has bccn argucd that thcsc tcrms arc 'spurious' in the 
sense that they do not pertain only to the scattering process by the potential U under 
investigation, but originate in the boundaries of the magnetic field; thus they have to 
he disregarded in one way or another. 

As we have already emphasized, the particle has to enter and leave the field 
region and the physical effects of the transition region (if there are some) have to be 
taken into account in the theory of the Larmor clock; in principle, they cannot be 
observationally disentangled from those due to t h e  scattering potential U alone. 'RI 
our knowledge, the existing literature has only discussed the abrupt switching on of 
the field (step function) and the resulting oscillating terms in (4.8). This switching 
on, which idealizes a situation where the field strength changes on a much smaller 
scale than the de Broglie wavelength of the particle, is admittedly not very realistic 
if the field is supposed to be produced by a macroscopic device. In this case it is 
more iegitimaie to assume that in the transition region the fieid variation occurs on 
distances much larger than the de Broglie wavelength of the particle. We model this 
situation with a cut-off function ~ ~ ( ( 7 , )  such that 

1 
(4. in) 

where g ( r )  is a twice continuously differentiable function with compact support, 
0 < g(r) < 1 and g(0) = 1. Clearly d w R ( r ) / d r  = O ( p - ' )  for r > R, so p- l  
is a measure of the size of the field gradient in the transition region. We have the 
following result. 
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Proposilion 1. Assume that the potential u ( r )  fulfils the condition 

d s s l u ( s ) l =  N ( r )  < M 0.G r < 03. (4.11) 

Then, for any fixed e and E > 0, we have 

- 2 t r L 6 i ( X ) I  = T ~ ( w , )  = - d r w R ( r )  ax h=O fik /O 

9- Pm 
A,,' 

R I 

d6; 
+ 2 h = + O ( R - ' ) + O ( p - ' ) + O ( N ( R ) ) .  

Pr"$ Since. U ; ( ? - )  verifies (4.3) (with X = 0), one has the identity 

1 d 
= -h(E(r) d r 

with 

(4.14) 

It is shown in appendix B that under the condition (4.11), ~ ( E ( T )  has asymptotic 
behaviour as r -, 03 

(4.12) 

(4.13) 

Since h(E(0) = 0 (U&(.) is the regular solution of (4.3)) and w R ( r )  is constant for 
r < R, an integration by parts of (4.5) gives 

(4.16) 

where g ' ( T )  = d g ( r ) / d r .  For R large enough we can insert in (4.16) the asymptotic 
behaviour (4.15). After an integration by parts of the linear term in r and using 
g ( 0 )  = 1, we obtain 

Since ( p r + R ) - '  < R-', the last tcrm is O ( l / R ) + O ( N ( R ) )  for all p. Moreover, 
after an integration by parts, we find that the fourth tcrm in (4.17) k less than 

(4.18) 
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uniformly with respect to R. Finally, the sum of the two first terms of (4.17) equals 
( 2 m l h k )  som drw,(r )  and this proves (4.12). 

Ph A Martin and M Sassoli de Bianchi 

We now see that 

(4.19) 

for each E and C fied. Because of the smooth transition region (in the sense 
k p  >> 1). there are no more reflections at the boundaries of the field and we obtain 
the expected limit (3.6). 

The common divergent term (the first term of (4.12)) is a purely classical quantity. 
It can be written as s-", d s  w,(s /u) ,  i.e. the time needed by a classical particle of 
veiocity u = A k j m  to cross the fieid region aiong its diameter, weighted by the 
function w,. 

It is worth noting that if U,(?) is assumed to be infinitely differentiable (i.e. g ( r )  
is infinitely differentiable with vanishing derivatives at 7- = 0), then the correction due 
to the transition region (the fourth term of (4.17)) vanishes faster than any power of 
the field gradient p- ' .  On the other hand, if one lets p - 0, w, approaches the 
step fi;iiaioii X, and one iecavers fiom (4.17) the iisak (4.8) *ith oscilktiiig Eiiiij. 

The piesent analysis can be extcnded to potentials U which are not necessarily 
rotation invariant. For this one can follow the method of [20], replacing the char- 
acteristic function of the sphere by our w, (4.10). Then, one obtains the result of 
the main theorem of [20] as R - 00, p i w without using the somewhat artificial 
spatial averaging procedure introduced there. 

5. The spin scattering beyond the linear response 

In this section, we consider the scattering of a neutral particle in a weak (but not 
necessarily infinitesimal) field. Tb do this, we first study the scattering, a t  fixed energy 
E > X and angular momentum C, by the potential U + Xw, where w, is as in 
(4.10). We shall show that in the limit R - 00, p - 00, the matrix elements S l (  A)  
factorize into a product of two terms, one due to the crossing of the region where 
XW, acts and the other one due to the scattering by the potential v at energy E -  A. 
Equivalently, the effects of the potentials U and XW, become additive in the phase 
shifts 6&(X). 

Proposilion 2. Let w,(r) be delined as in (4.10). Assume that there exist a > 0 such 
that s," drrlu(v) l  < w and for 7' > ( 1 ,  U(].) is twice continuously differentiable and 
U(.), U'(?.), u " ( T )  are O(I . - ' ] ) ,  71 > '2. Then, for any fixed e,  E > 0 and X < E,  
we have 

N 

6&(X)  = c I v ( ~ ( ? , )  - I ; )  + 6;-,, + O ( R - ' )  + O ( p - ' )  (5.1)  

where hn(1.) = \ / "?n(  E - Aw,,( I . ) )  and 6; are the phase shifts of the scattering 
system ( H o ,  If, + U). 
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Prm~ Throughout all the proof we set R > a. Given e, X < E and E > 0 ,  there 
exist R suficiently large such that (we recall that 0 < w R ( r )  < 1 )  

r ( r )  5 ~ ( 7 . )  f - @ e ( e + l ) + X w R ( r ) < E - ~  r > R .  (5.2) 

If r 2 R, we wite the solution of (4.3) in the form (dropping now the indices e ,  E )  

2m 7.2 

U ( T )  = C+(7.)f+(r) + C-(T)f-(T) 
U‘(?) = i k ( r )  (C+(r).f+(r) - C-(r)f-(r)) 

h k ( r )  = J ? ~ ( E -  ~ ( r ) )  > G > o 

(5.3) 

(5.4) 

where u’(r) = d u ( r ) / d r ,  

(5.5) 

and f,(r) has the WKB form 

It is not difficult to check that U(.) verifies (4.3) if and only if the functions C,(r) 
obey the first-order differential system 

with initial conditions determined by the continuity of U( r )  and U’( r )  at r = R 

C,(R) = 4 ( ( k ( R ) ) 1 ’ 2 u ( R ) ~ i ( k ( R ) ) - 1 h ’ ( R ) ) .  (5.8) 

For r < R, we have A w R ( r )  = A, thus U(?.) = ~ ; - ~ ( r )  is the regular stationary 
solution of the radial equation with potential Y (  r )  and energy E - A. Hence it has 
the asymptotic behaviour 

(5.9) u ( R ) =  u ~ - ~ ( R )  1 = .4s in(n :R-Cx/7+6~- , )+0(12-’ )  

u’(R)= (u i - , , ) ’ (R)  = A ~ : C O S ( K R - C ~ ~ / ~ + ~ ~ _ , ) + O ( R - ’ )  (5.10) 

where fin = Jzrn(E - A )  and 
that, according to (5.2) and (5.5), onc has 

is a constant to be determined later. We observe 

k ( r ) = n : ( r ) + O ( r - ? )  r >  R (5.11) 

with K (  R )  = n: and K (  7.) = k for 11 sulRcicntly large (since w R ( r )  has compact 
support). Combining (5.9), (5.10) and (5.11) in (5.8) gives 

+ O ( R - ’ ) .  (5.12) 
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Furthermore, it is shown in appendix C that for T 
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R 

C+(T)= C * ( R ) + O ( R - ' ) + O ( p - ' ) .  (5.13) 

This implies that for T > R 

4 ~ )  = c+(R)f+(i.) + c-(R)f-(~) + O ( R - ' )  + O ( P - ' )  (5.14) 

is, in fact, given by the usual WKR approximation provided that R is sulficiently large 
and that the field gradient is sufficiently small in the transition region. In view of 
(5.6) and (5.11), f+(v) have the asymptotic behaviour 

xp f i ( k r - k R +  d s ( t i ( s ) - k )  + O ( R - I ) .  (5.15) ( Lm ) f*(.) = - e  4 
Thus, for T 2 R, 7' sufficiently large, (5.12), (5.15) and (5.14) lcad to 

The comparison of (5.16) with (4.4) shows that A = m. Moreover, since Sh(X) 
is continuous in A, we choose the determination of 6k(A)  which is continuous in X 
with 6 h ( A  = 0) = 6;  and conclude from (5.16) that (5.1) is true. 

We see that the phase shifts have a well defined asymptotic bchaviour (5.1) without 
oscillations. This has to be contrasted with the case wR( 7.) = x R (  T )  (abrupt switching 
on) which produces the phase shifts 

If one calculates 2 h  a&(A)/aA/,=, from (5.1) and (5.17) respectively, one recovers 
(4.12) and (4.8). 

Expression (5.1) has the following interpretation: the Eisenbud-Wigner time delay 
associated with thc scattering of the particle by the potential U + Xu,, i.e. T ~ ( A )  = 
2R&5k(A)/aE, is equal to the sum or two contributions 

T ~ ( A )  I = .;(A) + rE-,, c (5.18) 

where 

(5.19) 

and T L - ~  is the time delay due to the potential U alone at energy E - A. It is 
not hard to check that as R -+ CO, ~ g (  A )  is the asymptotic form of the time delay 
corresponding to the scattering of a classical particle by the potential Aw,(T). 

Expression (5.1) may also be compared with the standard WKU phase shifts 121). 
The difference is that here the semiclassical treatcment Only applies to the transition 
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region for XwR (because of its weak gradient), whereas the full quantum mechanical 
scattering by the potential U is taken into account. 

p - 00, the potential Xw, has no effects on the scattering by U, except for the 
energy shift E - X and the additional classical time delay (5.19). This is because 
the first factor in (5.1) is an overall phase depending only on the energy and thus 
commuting with the momentum operator. More specifically, if FE($) is any function 
of the momentum p on the energy shell (i.e. depending only on the angles $ = p/lpl  
of p with Ipl = ( 2 m E / h 2 ) ' I Z  fvted), the matrix elements of the asymptotic operator 

lim ( e ,  mlsk ( A )  F~($)s~( A )  I c',  n~') = lim s; * ( X) s$( X )  ( e ,  ml F ~ (  $1 le', m') 

The main consequence of the result (5.1) is that, in the limit R -+ 00 and 

R-CC R-CC 
P-m P-CC 

.I 

- - e 2 c L % > 1 ( g ,  ntIFE(p)lC'r l ,L ' )  (5.20) 

converge to those due to the potential v alone. In particular, if U = 0, there is no 
scattering at all and the cross section vanishes. 

We now consider the scattering of a neutral particle of spin s. For each E and 
e, Sk(X) is now a (2s + 1 )  x (2s + 1 )  matrix, diagonal in the basis of eigenvectors 
of E,, with e!e.??cnS Si(mSA), --5 6 z t s  < s cbtnined by :ep!ncing X by x s A  
(5.1). Far a spin-f, we find according to (5.1) 

(5.24) 

When there is no dispersion in energy, the spin vector (E)$" = ((Xz)i",(Ev)i") 
undergoes a rotation in the (z,y) plane of angle a i ( w R , X )  which is the sum of 
two terms. The first of these two terms, a O E ( w R ,  A ) ,  diverges as R - 00 and is the 
rotation angle of the outgoing spin vector in the magnetic field when the scattering 
potential v is set equal to zero. Thcrcfore, thc ditfercnce 

rl c l  

+ O (  R-')  + O ( p - l )  (5.25) 
t *i.+fi.\p - *k-ni/? 

X t i  
a E ( w R , X )  - aoE(w, , ,X )  = 2Xl i  

has a well defined limit as / I  - u3 and p - 
for a spin-; at fixed cnergy E and C, for a cut-off function givcn by (4.10). At the 
first order in A, one recovers the Eisenbud-Wigner rime-delay and higher order terms 
in X give access to the highcr order derivatives of the phase shirts 6; with respect to 

which is thc gencralization of (4.19). 

the energy. 
However, if the incoming statc p has some dispersion in cncrgy (but with no 

contributions below Xfi/2), (5.21) has to bc rcplaccd hy 

( I * ) y ( X )  = (I*)"' d E  Ip((E)l?ef~~:(-J). (5.26) J 
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Since aL(wR,X) varies rapidly for large R, (C,);"'(X) is now subjected to an 
attenuation (for instance, a n  integration by parts of (5.26) gives l(C,)y"'(X)l = 
O( R-I) as R -t cu). This attenuation is due to fact that in the field region, the spin 
up and down parts of the wave packet (relative to the field direction) have different 
effective momenta htc,(?) (see (5.24)) and thus propagate at different speeds. This 
produces a spatial splitting of the incoming wave packet which is the reason for 

experiments [22]. It is easy to check using (5.26) that this attenuation is negligible if 
m X A R  << 1 where A is the energy width of the wave packet which peaks 
at about E.  

All the results of sections 4 and 5 can be easily specialized to the one-dimensional 
scattering problem. We define the cut-oti function as in (4.10) with T = 121, z E R. If 
mnc potenrial IS uivariani unucr inc renecwn x - -z, ihe saiieriny opetaior ai ikeb 
energy is diagonal in the representation of even and odd functions of the momentum 
hk. Then, t = 0,1,  where 0 corresponds to the odd functions and 1 to the even 
ones. The phase shifts 6;( A )  and 6k( A )  are connected with the transmission and 
reflection coefficients by 

P L ( A )  = ITE( A )  - 'R.,(X) .?iak(h) = % ( A )  f i x  + A )  (5.27) 

and the results of propositions 1 and 2 are the same for &;(A) and SL(X) .  
In one dimension, it is possible to apply the WKB method of proposition 2 to a 

potential U which is not necessarily invariant under space reflection (but still keeping 
the same form (4.10) of w E ) .  Working now in the two-valued energy representation 
specified by E and kllh-1, the S-operator of the scattering system (If,, H ,  + U), on 
the energy sheii, is given by the ioiiowing '2 x 2 unitary matrix 
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ihe aiienuaiion' - ~ ' -  inis eReci has been discussed in the context of neutron beam 

_I. . .. I .__ ~~ _ .~  ~ ~~~" ~ ~. . ._ 

In (5.28) TE and 7LE are the transmission and reflection coetlicients for a particle 
with energy E coming from the left and R'E is the reflection wclficient for t h e  
particle coming from the right. The equivalent of proposition 2 is now that SE(X). 
X < E ,  is asymptotic to TOE(A)  Sk2-h as R - 05 and p - CO, where ToOE(X) = 
exp (2iJ,"dr(ti(r) - k ) )  is the transmission coefficient for the scattering system 
without the potential U. Notice that  lTaE(X)I = I ,  i.e. the potential Xw, causes no 
rcflections. Since TOE(A) is a purc phase factor, wc find that, at k e d  energy E and 
for a spin.;, the length of the diticrcnce of the spin vcctor in the (z, y )  plane 

I (%YX)  - (W;uEL(A)I 

again has a well defined limit as R - cu and p - N 

6. Concluding renuirks 

The scattcring of a quantum mechanical particle by a (non-random) potential (here 
Y + X u )  is a fully coherent process; all interactions, wherever they take place, con- 
tribute coherently to the wavefunction. By a rigorous quantum mechanical treatment 
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of the full process (field and potential), we have shown that the spin clock agrees 
with the (classic) Eisenbud-Wigner time delay, a t  fwed energy as well as for wave 
packets, under the following conditions: 

(i) one considers the average value of the  total outgoing spin ( i t .  summing up 
the contributions of all scattering directions); 

(ii) the magnetic field is switched on smoothly in space in a spherically symmetric 
region; 

(iii) one  retains the linear response term in the field strength; 
(iv) the field region is eventually extended to the whole space. 
Under the same conditions (i), (ii) and (iv), we have also investigated the func- 

tioning of the spin clock beyond the linear response regime. At k e d  energy relevant 
information can be obtained on finite-energy differences of phase shifts. When there 
is some dispersion in energy, the outgoing spin magnitude is attenuated because of a 
(Stern-Gerlach) splitting of the spin component waves inside the field region. This 
confirms the view that the apparent pure spin rotation occurring in the linear re- 
sponse should be interpreted as a coherent interference between the spin component 
waves in the field region, rather than as a classical Larmor precession (see [22] for a 
discussion of this point). 

Conditions (i) and (iv) may also be dropped by performing a spin measurement 
in a definite outgoing direction and/or considering cases where the magnetic field acts 
only locally on some region of microscopic size. 

It is certainly of interest to investigate what information can be obtained on 
tunnelling processes from a partial spin measurement (for instance, in one dimension, 
the spin associated with transmitted or reflected wavcs separately; see the comment 
a t  the end of section 3). This aspect was not discussed in this paper but we shall 
return to this point in further work in relation to the concept of ‘angular time delay’ 
(see for instance [23]). 

If the magnetic field has a strictly local action in some region there will be, in 
principle, quantum mechanical interferences due to the non-vanishing gradients a t  
the finite distance boundaries of this region. Tb what cxtent they can be disentangled 
from the scattering waves due to the potential v has to be examined in each case. 

The  sojourn time also has a local character. As emphasized in [24] it is an ideal- 
ized quantity obtained by a continuous observation in the limit of weak disturbance 
of the system by the measurement procedurc. In fact, the linear response of the scat- 
tering system to an applied field, as dcscribcd in section 2, precisely provides such a 
measurement. We undcrstand then that the sojourn time also unavoidedly embodies 
the physical consequences of the spatial switching on of the field specified by a choice 
of the cut-off function w .  

Many studies have becn devoted to local tunnelling times (see for instance (1, 
2.51 and references cited therein) hut, in our opinion (and this is also a conclusion in 
[l]), the Eisenbud-Wigner phase shift is the only concept ol time delay intrinsically 
attached to the potential U :  it has to be a non-local quantity by the very nature of 
quantum mechanics (a wave packet cannot have compact support for all times). 

A final rcmark is in order. ’lb our knowledge, in the present work as well as 
in almost all the cxisting literature, the cut-off function w is always chosen to be 
spherically symmetric (or reflection invariant in one dimension). The  only exceptions 
a re  the one-dimensional case [14] and the treatment of the trace T h E  of the time 
delay operator [26]. A spherically symmetric cut-off has the advantage that it leads 
to the expected result (the usual Eiscnhud-Wigner phase shift) and facilitates the 
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analysis (for instance a simple application of the WKB method of proposition 2 is 
only possible with the radial ordinary differential equation). We think that the reason 
for this choice is, in fact, more fundamental: if more general cut-off functions are 
allowed the convergence (3.5) is no larger guaranteed [27]. 
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Appendix A 

in this appendix, we establish the formula (2.6) for a class of spherically symmetric 
potentials. We have from (2.3) 

One proceeds witn the ioiiowing steps: 
(i) the strong limits (2.1) hold on L2(W3)  uniformly with respect to X (1x1 < Xo); 
(ii) there exists a dense set D c t 2 ( R 3 )  such that s-lim AI(X)a-(X) 'p  = 

A(X)a-(X)p, uniformly with respect to A, on the set n-(X)p, 'p E D, where 
A(X) = A,(X) is given by the integral (A.2) with infinite integration range; 

(iii) s;lim AI(X)f2-,t(X)p = A(X)n-(X)'p, p E D, uniiormly with respect to 
A.  

The assertions (i) and (iii) imply that, for @ E L?(W3) and p E D, the sequence 
of derivatives 

1-CC 

-m 

converge uniiormly with respect to A.  This justifies thc cxchange of the infinite time 
limit with the X dcrivativc and gives (2.6) whcn X is sct equal to zero in (A.4). Point 
(i) follows from the standard Cook estimate 
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which is obviously uniform with respect to A, ( A (  < A,. 'RI establish (ii), we show that 
(At~(X)-Al,(X))Q-(X)p, t 2  > t , ,  'p E D, form a strong Cauchysequence uniform 
in A. We omit the variable X from now on, remembering that the total potential is 
U + Xw. We use the inequalities 

iI (A t2  - A*,)Q-v I /  

+L: 'ds / I w u , % l l +  l l w l l ~ ~ 2 d ~  l l (KQ--u3s)~ l l .  ( A 4  

We note that the integrability of the functions occurring in (A.6) is precisely the 

'D = {p E Lz(W3); @ ( k )  = Jd3reik'c  p(z) is three times continuously differentiable 
with compact support and no support in a neigbourhood of k = 0}, v is spherically 
symmetric and U(.) = O ( r - 5 / 2 - E )  (we recall that w has compact support). The  
analysis of [12] relies on the Cook estimate (AS) and on the finitness of the moments 

-n&dan cndp: -$,ch the e-istence gf :he d e ! q  is pr=y:efi iq [IZ], i.e. it h&js if 

,..,-,,, rJ--?, . . , - , ,  I , n , - . , 3  " Q Q ? + E .  I "'I,. ' I Y ( , ~ ,  4- A W (  ',I *, I,, I~ I Y ( , ~ , I  a0 [<,, I~ I W { ,  J I  I 
('4.7) 

Both estimates (A.5) and (A.7) arc uniform with respect to X, and this completes the 
proof of (ii). For (iii), we havc with (A.3) 

j j  (At0-,< - A Q - j p  j j  sii ( A ,  - A j i i _ ' p  i i  t / I  A,i/ i j  (Q-,, - 2-)P i /  
('4.8) 

<I1 (4 - A1Q-V I1 +2 I1 w 11 t I1 (Q-, t  - Q- jV  I1 , 
The first term in the right-hand side of (A.8) tends to zero uniformly with respect to 
X by (ii). So does thc second term since by the Cook estimate 1 1  (2-,[ - Q-) 'p II= 
O ( t - l - c ) ! ' p  E 2,! uniformly with respect to X (see !12]). This completes the proof 
of (2.6) for p E 2, and for sphcrically symmetric potentials v decreasing at infinity 
more  rapidly than ~ ~ 1 ~ .  The proof could be extended to non-spherically symmetric 
potentials by the methods of [13]. 

Appendix B 

We give here a proof of (4.15) in section 4. Using the method of the variation of 
constants it is not difficult to show that the solution of (4.3) with asymptotic behaviour 
(4.4) obeys the Volterra-type integral equation (see [28] for the method) 

u ' ( k , r . ) = Z ' ~ ( k , ) . ) + Z L : ( l i , , . )  l i k =  v5xE (B.1) 
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with 
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4(k ,7 . )  = cos 6‘(k)j,(k7,) + sin 6 L ( k ) n t ( k r )  (8.2) 

:; lm 63.3) 
‘ q ( k , r )  = - d s G : ( r , s ) ~ ( s ) ~ ‘ ( k , s )  

@ l $ .  .s)= ? , . lL . c l ; . ( l . , . \  _ -  / 1 - ” . j ;  / I . ” >  (8.4) “t\” I J t \ m D I  e , .  ,-, - . ” ( \ . “ - , J ( \ . ” .  , 
where j , ( z )  and n L ( z )  are the usual Riccati-Bessel and Riccati-Newmann functions 
with asymptotic behaviour 

j , ( z )  = s i n ( %  - C?r/2) + O ( l / z )  

n t ( z )  = C O S ( E  - c T / 2 )  + 0(1/.). 

Inserting (B.l) into (4.14) gives (dropping the indices E and e )  
A % d k , F )  

We first derive the asymptotic behaviour of A o , o ( k ,  r ) ,  noting that, under the Eon- 
dition (4.11), the phase shifts 6 ‘ ( k )  are continuously diffcrcntiable for 12 # 0 (see 
[%I). One obtains, setting z = k7-, 

.4e,C(k3r) = C O S ~ ~ ( ~ ) ( ~ ~ ( ~ E ~ J  - n j ’ ) ( z ) + z ( j ” j  - j ” ) (z)+ j ’ (z) i fz ) )  
’*‘ ~ ‘ J  

d6(k)  
\ d k  

) +sin? 6 (  k )  ( k-  d6(k)(7L5-nj0(  z) + .(7111~.-n’2)(2)+?1)( z)n(z) 

+ s i n  6(k)cos 6 (k ) (z ( j ”7~  -j’7~’)(z) 

d k  

$7) I ( - 1 1 ;  ~ - ! ; I \ / ” . \  I / i t ” .  I “.l;j /- \ j  
I \ “  J J 11*1 T \ J  T * ‘ J I \ ~ I I ~  

Using the following properties of the spherical Bessel functions 

j ” ( E )  = - J ( z ) +  O(:L.-?) 

I‘ I&, T J (‘1 = I f “(.L 

ll,”(T) = -I.(.) + o(,c-’) 
j ’ ( z )  = 7%(z)+o(:t:-’) 
- 2 , - . \  I i’,.., 8 r , , - . - 2 \  , 

n’(z )  = - j ( z ) +  O(z-’) 

(B.8) 
(B.7) becomes 

1 1 d 6 ( k )  I’ 1 . 
-Ao,o(k ,  r ) =  -- + - - - ( j (  kr.) cos 6( k)+ I % (  k r )  sin 6( k ) ) (  7 ~ (  k7.) cos 6( k )  
2 k  2 d k  2 4k 

- j ( x ) s i n 6 ( k ) ) +  O ( r - ’ )  
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where the last equality follows from (B.5). This is the expected asymptotic behaviour 
of h$(r) .  lb complete the proof of (4.15) it remains to show that under the condi- 
tions (4.11) the three last terms in the sum (B.5) do not contribute as P + CO. As 
a consequence of the fact that the spherical Bessel functions are uniformly bounded 
away from the origin, we have for k f 0 and P > 1 

2 '  
U O ( k , r )  = O ( r )  4 ( k , 7 9 , 2 ( k , r )  = O(1)  - ( k , r ) , -  

d u' du: 
d r  d k  d r d k  

(B.lO) 

and also, solving the integral equation (B.l)-(B.4) by iteration, 

(B.11) 
d U' 

d k  
u ' ( k , r )  = O(1) - (k , r j  = O ( r ) .  

Then one deduces from (B.3) that 

(B.13) 

(B.12) and (B.13) imply that all thc tcrms .4* ,#(k ,v) ,  ( a , P j  f (0,O) are O ( N ( r ) ) .  

Appendix C 

We indicate here a proof of (5.13). For this we write (5.7) as an integral equation 

C*(r)  = c * ( R )  + a+(r) (C.1) 

where 

An integration by parts of (C.2) gives 

We know that the regular solution U (  1,)  of (4.3) and its derivative U'( r )  are bounded 
(see for instance appendix B); the definitions (5.3) and (5.4) imply that the same is 
true for C+(r) and C-(r). Then, usin!: ( 5 . 9  it is a simple matter to check that for 
s )  R 
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lb obtain (C.5) we have taken into account that, by (5.7), C’,(s) has the same bound 
as (C.4). Introducing (C.4) and (C.5) into (C.3) gives, after integrating (r‘(s))* by 
parts, 
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la*(~)I < M4 SUP d 2 R  I r ’ ( s ) l+  M , l m d s  I Y ” ( ~ ) I .  (C.6) 

In view of (4.10) and with the conditions assumed for the potential U, one has the 
estimates 

implying that (5.13) holds when q 2 2. 
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