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Absiract. Using the time-dependent scatiering theory we prove that, in any spatial
dimension and for arbitrary spin, the reading of the Larmor clock agrees with the global
(Eisenbud-Wigner) time delay in the limit of an infinitesimal magnetic field. We show
that convergence is also achieved at fixed energy (without osciliating terms) in the limit
where the spatial switching on of the field occurs on a much larger scale than the de
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clock beyond the linear response regime.

1. Introduction

In recent years, the concept of the tunnelling time of a quantum mechanical particle
has been the subject of many studies, mainly motivated by the prospect of high speed
devices based on tunnelling structures in semiconductors (sce the review paper [1]
and references therein). One of the proposals (the Larmor clock originally introduced
in {2, 3]) is to measure the duration of a scattering event by means of the precession
of a spin in a weak homogeneous magnetic [ield. Heuristically, a constant magnetic
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uniform rotation, and so the total precession angle wili be proportional © the time
elapsed during the collision process.

This picture has been substantiated in [4] by a detailled study of the motion
of a one-dimensional wave packet through a potential barrier in the presence of a
magnetic field. A freely moving wave packet [irst enters a region where a uniform
magnetic field is applied, far away from the scattering centre. Then, it undergoes the
scattering process in presence of the field, and finally the scattered waves leave the
field region. By retaining in the phase of the wavefunction only the contributions that
are linear in the field, the authors show that the reading of the clock agrees with the
Eisenbud-Wigner time delay (sce [5] and refercnces therein, and [6], ch 7-2), ie. the
derivative of the phasc shift with respect to energy (also called classic or asymptotic
phase time).

In [7], the authors point out the intimate relation between the linear response
of the scattering operator to an additional external perturbation and the sojourn
(or dwell) time for a particle in some spatial region. With this relation they can
easily establish that the (infinitesimal) rotation of the spin of a neutral particle is
proportional to the sojourn time, so the difference between the precession angles
relative to the interacting and free mortion is proportional to the difference of the
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3628 Ph A Martin and M Sassoli de Bianchi

corresponding sojourn times. Since the latter quantity converges to the Eisenbud-
Wigner time delay for large spatial regions [5, 6], it was found that the reading
of the clock coincides with the classical phase time for infinitesimal fields. All the
considerations in [7] are restricted t© one dimension and rely on {ormulae for the
stationary scattering states formalism.

The purpose of this work is twofold. Tb begin with we generalize in sections
2 and 3 the result of [7] to all space dimensions d = 1,2,3 and arbitrary spin s
(for a neutral or charged particle). We feel that the connection between the linear
response of the S-operator and the sojourn time can be exhibited more simply and
with greater generality by using the methods of time-dependent scattering theoryt.
We find that in any dimension d the reading of the Larmor clock constituted by a
(neutral or charged) particle with spin s in an infinitesimal ficld is always given by the
Eisenbud-Wigner time delay, provided that one works with wave packets and extends
the field region to the whole <,

Then, in section 4, we again consider the problem from the viewpoint of time-
independent scattering theory with spherically symmetric potentials. When the mag-
netic field is switched on abruptly in space (i.e. a step function), it was noted a long

time ago that the convergence to the Eisenbud-Wigner time delay is not achieved
at fixed enerov hecause of the existence of oscillatine terms. These oscillating terms
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the physical origin of which is the interference of reflected waves at the boundaries
of the magnetic field, have bcen the subjcct of several discussions in the literature
(see for example [4, 9, 10]). In a good spin clock, the magnetic field should be
responsible for the precession of the spin, but should not cause additional pertur-
bative effects on the orbital degrees of freedom, which would interfere with those
due 1o the scattering process under investigation. Qur point here is that this can be
achieved if the magnetic field is produccd by a macroscopic device with the following
properties: it extends to a region of much larger size than that of the (microscopic)
range of the scattering potential and its spatial switching on occurs on a much larger
scale than the de Broglic wavelength of the scattered particle. With such a model of
the magnetic field (precisely defined in section 4) we prove the convergence to the
Eisenbud—Wigner time delay at fixed cnergy when the field covers the whole space
and its gradient becomes vanishingly small in the transition region.

So far, all the above results have been obtained in the framework of the linear
response theory. In section 5§ we address the problem of the functioning of the
spin-clock, for a neutral particle, beyond the linear response regime for the case of
a spherically symmetric potential. With the same model as in section 4 we show
that, in the scattering operator, the magnetic ficld rcsults asymptotically in a phase
factor depending only on the encrgy and the spin component, but not on the angular
momentum. Consequently, the magnetic ficld is transparent in the sense that it causes
no deflection of the particle. Then we find in a weak, but not necessarily infinitesimal
field, when there is no dispersion in energy, that the measure of the rotation angle of
a spin-1 particle after the scattering process (relative to the free motion) still provides
relevant information, which can be expressed in terms of finite encrgy differences of
phase shifts. Oniy the lincar term, which agrees with the encrgy derivative of the
phase shifts found previously, has the legitimate interpretation of the time delay of
the scattering process. Finally, when the incoming state has some non-negligible

+ After submission of this work, the authors of {7] kindly informed us of their [orthcoming paper [8]
where the same generalization is considered.
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dispersion in energy, one observes an attenuation of the outgoing spin vector, due t0
a spatial splitting, inside the magnetic field region, of the up and down parts of the
incoming wave packet (relative to the field direction).

2. Response of a scattering system to a perturbation

We consider a quantum particle in d dimensions (d = 1,2,3), with kinetic energy
H, = -KE*A/2m (A is the Laplacian in R%), which is scattered by a potential
v(x) + dw(z), where Aw(x) is a perturbation of v(z); w() is supposed to be
bounded and with compact support, A is a coupling constant in the range |A] €
Ay < oo, We denote by U, = exp(—iH,t/h) and V,(A) = exp(~iH(A)t/h) the
evn!uur_m groups generated by Hn and H(,\\ Hn + v 4+ Aw. We assume that for

each X in the range |A| < A, (HU,H (J\)) Torms a complete scattering system [6]
with wave operators

Qu(A) =slim 0, , () Q4 (A) = VL, (W)U, @1
such that Range Q_ (A} = Range ©_(A). The scattering operator is defined by

S(A) = QLM (A) = s-lim 5,(N) (2.2)
with

S, (0 =l ,(MNQ_ (XN = UV, (AU _,. (2.3)

We would like to compute the linear response of the scattering operator to the
perturbation Aw. For this we note that S,(A) can be easily expanded around X = 0,
using the usual time-dependent perturbation (Dyson’s) series at first order in A {the
series converge for a bounded w)

Si()‘}fﬂfl-i\l__j as v, w v, i t-—{-O(/‘\z) (2.4
, 5o, s s -
giving
9 ¢ Lot Cds ViV, 2.5
xS M = — 50 | dsViev, Q. (2.5)

In (2.4) and (2.5), the operators V, = V,(0), Q, = 2,(0) and S, = 5,(0) refer to
the unperturbed scattering system (H,, H = Hy 4+ v). Permuting the infinite time
limit and the derivative with respect 1o A we obtain formally from (2.1), (2.2) and
(2.5) the linear responsc formula

B ol = atim Ll = iat (T asviev Yo (2.6)
8/\ \ /I/\..U o0 A iy |\0 n +\J_oo 3 .!/ - b i
Using S = Q! one can also write (2.6) in the form

inst = 5(,\) = T(w) @7

A=0
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with
o0 o0
T(w) = 0} U ds V;wv,) Q_= f ds UlQtwQ_U, (2.8)

where the last equality follows from the intertwining relations V,Q, = Q,U,. In
appendix A we give conditions for the validity of formulae (2.6)—(2.8). They hold for
sufficiently regular short-ranged potentials on a dense set of states D and the limit
(2.6) has to be understood in the weak sense. If w(z) = x (=) is the characteristic
function of the sphere of radius 2, we see that

(0T = [ dslxaVisl?  $=00  weD 9)

is the sojourn time in the sphere of the particle scattered by the potential »» and with
incoming state .

3, The Larmor clock

A neutral particle of spin s is scattered by the potential ¢z} and submitted to a static
magnetic field B(x) = (0,0, B,(=x)) applied in the z-direction on the region where
the scattering takes place. We write the magnetic energy —u B, (=), (£, is the 2-
component of the spin operator and p the magnetic moment) in the form Aw(z)X,
where w(a) is a dimensionless local bounded function whose support determines the
spatial region where the field is applied and X is a measure of the field strength (A
has the dimension of a frequency). Specific forms of the cut-off function w(z) will
be discussed in the next section. The total Hamiltonian, still denoted by H(A), is
H(A) = Hy+ v+ AX,. The scattering system { H,, H(\)) has wave and scattering
operators acting on L?(R%) ® C?*+! siill denoted by €, (2) and S(\).

Let ¢ = @ ® x be a normalized incoming state with orbital wavefunction ¢ € D,
spin state x and ¥ a spin operator (¥ may be, for example, a combination ¥, =
Y, #iX ). The average value of T after the scattering process, denoted by (Z)°U*(A),
is given by

(Z)°MH(A) = (S(M)e, SS(A)e). 3.1)

The response of {£)°“*{A) to an infinitesimal ficld can be computed from (2.7) and
(2.8) with w replaced by wX . Using the fact that § = S(0) commute with the spin
operators and TH(wZ ) = T(wX,), we find

a a8 el
8_X<E>OUL(A)lA=0 = (5(A)|A=o¢’gsd’) + (Sqﬁ’sﬁ()‘)h.—,n‘f))

3 (8.[T(w5.), Sl) (-2

= 1 (%[5, S (0, T(w))

where [, T] denotes the commutator between ¥, and . If, for instance, we set
Y=1%, and w = xp in (3.2), we deduce that up to the first order in A

(S4)° () = (1 1M, T(xR))HEL)™ + O(A) (3.3)
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which means that during the scattering process, the spin vector (ZYr =
{((E.)",(£,}'") has accomplished an infinitesimal rotation of angle

o, (xp:A) = Ao, T(xp)e) + O(A?) G4

given by the product of the Larmor frequency of the field with the sojourn time of
the particle in the region || £ R where the field is applied. If we subtract from
e (xg,A) the angle which would occur if the potential v is set equal to zero and
then take the limit of an infinitly extended space region, we obtain

Jim 2 (a0, (e N) = 2o, (e M) | = lim (6, T(xa)) = (0, Tolxn)))
= (¢, 7¢)- (3.5)

In (3.5), the quantities with an index O refer 10 the system (H,, H, + xz X ) without
scattering potential » and 7 is the Eisenbud—Wigner time delay operator with energy
shell components [6, ch 7-2]

t 95g

‘TE = —lﬁSE—aTE;"

(3.6)

where Sg is the scattering operator of the system ( Hy, H) at fixed ¢energy E (ie. a
unitary operator acting on L*(o?~!}, the square integrable functions of the surface
o~ of the unit sphere in R?). More generally, for any spin observable £, one
obtains from (3.2} and (3.5}

lim f% ({Z)" (X)) = {Z)59 () |A__'0 = iﬁ(x, [Z.,E]xH e, T). 3.7

The existence of the infinite space limit, (3.5) and (3.7) for suitable wave packets
¢, has been establiched in a number of works {e.g. [11, 12} for spherically symmetric
potentials and [13] for potentials which are not necessarly rotation invariant; in the
context of one-dimensional tunnelling, see {4, 14} and also 7] where the correspond-
ing linear response relation (2.6) can be found). Notice that the existence of the limit
(3.5) does not require the choice w(x) = xpz(x) (corresponding to an abrupt spatial
switching on of the magnetic field), but also holds for sequences w(x} = wg(x) of
on of the field, such that im _ wg(®) = 1 (e.g. [13, 15, 16]). In any case there
is a large class of potentials v and cut-off functions wy for which the limit (3.5)
holds. We therefore see that the linecar response to a mapnetic field of a scattered
ncutral particle in d dimensions with arbitrary spin s gives the Eisenbud-Wigner time
delay in the sense of formulae (3.5) and (3.7). These formulae involve three Jimiting
procedures: the infinite time limit (2.2), the linearization with respect to the field
strength and the extension of the field action to the whole space R?. The infinite
time limit is required as usual to have a complete scattering event. The need for the
existence of the last limit is justified by the request that the spin clock should provide
intrinsic information on the scattering process, independent of the size of the region
and the manner in which the field is applied. This limit cannot be permuted with the
two first ones. If the field is taken to be constant on R? at first (ie. w(=z) =1 in
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H(X)), it is clear that the spin decouples from the orbital degrees of freedom and is
not affected by the scattering process.

We have considercd, for simplicity, the case of a neutral particle. If the particle has
a charge g, the formulae (3.2)-(3.5) remain the same. Indeed, the total Hamiltonian
for a charged particle has the form

oy 2
H()) = HO+,\wS:+ﬁ(P-A+A-P)+2%;|A|2 (3.8)

where P is the momentum and Az} is the potential vector (B = V A A). Thus Aw
has to be replaced in the linear response formula (2.6) by the part of the interaction
which is linear in the field strength, ie. by AwX, + (¢/2m} P+ A+ A- P), but the
contribution to (3.2) of this additional term vanishes since it commutes with the spin
operators.

It is worth emphasizing that in (3.1) and the subscquent discussion, we have con-
sidered the average outgoing spin without the specification of any scattering direction,
In particular, since ¥, is a constant of the motion, it commutes with S(A) and thus
(£,)°(X) = (T,).

Let P, be the projection on some solid angle @ in momentum space. Then, one
can also consider the average spin when the outgoing particle is found in © (in one
dimension, the spin associated with the transmitted or reflected waves separately) ie.

(ZP,)°" (M) = (S(M)¢, P S(A)¢). 39

Since P, does not commute with the scattering operator, a change of the =z-
component of the spin is found when the particle is detected in . Working out
the linear response term in this case, we obtain

] QA T 0
(2, Po)™(A) = (.)7 (w0, ST PySe) + == (81 "Iu( g, ST P ST(w) ) + O(A%).
(3.10)

In the context of one-dimensional scattering, this observation led Biittiker [17] to
associate transmission and reflection times with this change in the z-component of
the spin. The definition and possible interpretation of these times are also discussed
in (18]. In the present paper, we shall only be intercsted in the total outgoing spin
(3.1) and its relation to the global (Eisenbud-Wigner) time delay.

4. The Larmor clock on the energy shell: the smooth switching on of the magnetic
field

In the preceding scction, we have secn that in order to observe a non-trivial effect of
the scattering on the spin motion it is necessary for the particle to enter and leave the
field region, however weak the field is and however large the region is. In principle,
the dynamics of the particle should depend on the nature of the transition region for
the field. It is a non-trivial result in the theory of the Eisenbud—Wigner time delay
that, when dealing with wave packets and ultimately extending the field to the whole
space, the limit (3.5) is in fact independent of the details of this transition region (see
references quoted after (3.7)).
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The situation is, however, very different when one works in the formalism of
stationary scattering theory at fixed energy £ (without averaging the energy of the
packet). Let w(r) be a spherically symmetric spatial cut-off function, and let Sg( )
denote the scattering operator at fixed energy E for the system ( H,, H (X)) described
in section 2 (S;(X) acts on L%(o?!)). In the rest of this section we shall mainly
be concerned with the three-dimensional scattering problem with a rotation invariant
potential v(r). Then, S;(A) is diagonal in the basis |{,m) of eigenvectors of the
orbital momentum, with matrix elements

(&, m|Sg(A)]e, m) = SL(A) = e2¥5(N) 4.1)

expressed in terms of the phase shifts 65 () in the usual way.

The response equivalent to (2.6) in the stationary formalism follows from the
observation that the perturbed and unperturberd phase shifts §5( ) and 6% = 6£(0)
are related by [19, ch X, section 17]

Imr [
sin(ﬁé()\)—ﬁ%):——gl? : dr ul(», Mw(r)uk(r) Bk = V2mE (4.2)

where u%(r, A) is the regular solution of the radial Schrédinger equation

2e+1)

2m r?

2 2
(ﬁ—d— + E—v(r)— dw(r) -

[ —
5 D2 )?J.E(T, AM=0 4.3

with asymptotic form
ufg(r,)\):sin (kr—?-{-éé()\)) + Of{r 4.4)

as r — oo and u%(r) is the corresponding solution of (4.3) with A = 0. Differenti-
ating (4.2) with respect to A at A =0 gives

inSL” = 9 gt £(N) —zﬁ%.sg(/\)

A=

N A=0 (4.5)
dr w(v’)(ufg(r)):’ = Té(w)

4m

k.

which are the energy shell and orbital momentum components of the operator (2.7).
In particular, if w(r) = xpx(r) (the characteristic function of the sphere of radius
R), one recovers the well known expression of the sojourn time at fixed energy [5,
10]

4m

R ,
s d?‘(u'i,;(r))'. ' (4.6)

TE(XR) =

If the Hamiltonian of section 3 is considered (with spin included), the corresponding

energy shell scattering operator $;(A} i8 diagonal in the basis of eigenvectors of

¥, and is simply obtained replacing w in (4.2} and (4.3) by X, w. In particular, the
stationary representation of (3.2) is

a

8/\(S> Y (A) = ,—(/\ (S, SIX)TE( ) @7

A=0
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The asymptotic behaviour of T5(xg) for large R has been studied in several
papers (e.g. [10] in the context of sojourn times and [2, 3] in connection with the spin
clock) and is given by

2mR 864 h .
TL(xg) = WJr‘zr‘;,-a—}-i{fl--zfsm(zkﬁt_evr+26§3)+o(1). (4.8)
An important point here is the occurrence of oscillating terms with R as R — co.
Because of these, the difference

86L b
TE(xr)-To&(xR) = 2ﬁa—§— ﬁ[sin(?kR—Gn—+2 §L)—sin(2kR—£m)] +0(1)
(4.9)

between the full sojourn time T () and the free sojourn time Ty%( x ») (obtained
by setting 6% = 0 in (4.8)) does not converge at fixed energy as R — oo (the oscil-
lating terms do not compensate). This is not in contradiction with the existence of
the limit (3.5) for wave packets; when (4.8) is averaged over a smooth energy distri-
bution, the oscillating contribution vanishes by the Riemann-Lebesgue lemma. As a
consequence the limit (3.5) is not uniform with respect to the choice of the incoming
packet; the better the energy definition of the incoming beam, the wider the field
region must be. In fact the oscillating terms in (4.8) have a clear physical origin which
is discussed in [9] (three-dimensional scattering) and [4] (one-dimensional problem).
They result from interferences due to reflected waves at the sharp frontiers of the
magnetic field (described as a step potential). These interference terms remain at the
linear order in the field. It has been argued that these terms are ‘spurious’ in the
sense that they do not pertain only to the scattering process by the potential » under
investigation, but originate in the boundaries of the magnetic field; thus they have to
be disregarded in one way or another.

As we have already emphasized, the particle has to enter and leave the field
region and the physical effects of the transition region (if there are some) have to be
taken into account in the theory of the Larmor clock; in principle, they cannot be
observationally disentangled from those due to the scattering potential v alone. Tb
our knowledge, the existing literature has only discussed the abrupt switching on of
the ficld (step function) and the resulting oscillating terms in (4.8). This switching
on, which idealizes a situation where the ficld strength changes on a much smaller
scale than the de Broglie wavelength of the particle, is admittedly not very realistic
if the field is supposed to be produced by a macroscopic device. In this case it is
more legitimate to assume that in the transition region the fieid variation occurs on
distances much larger than the de Broglie wavelength of the particle. We model this
situation with a cut-off function wy () such that

1 rg R

wg(r) = g(r-R) r> R
o

(4.10)

where g(r) is a twice continuously differentiable function with compact support,
0 < g(r) €1 and g(0) = 1. Clearly dwp(r)/dr = O(p~1) for r > R, s0 p~!
s a measure of the size of the field gradient in the transition region. We have the
following result.
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Proposition 1. Assume that the potential v(+) {ulfils the condition
f dss|pv(s)|= N(r) < 0-€ r < co. (4.11)

Then, for any fixed ¢ and E > 0, we have

A’.nlfb

_25__,5 (A)‘ = Th(wy) = j drwp(r)

+2ﬁ%+O(R Y+ 0(p~Y) + O(N(R)). 4.12)

Proof. Since u(r) verifies (4.3) (with A = 0), one has the identity

(up(r))? = ——hi(r) (4.13)
with
K2 (3uf oub, 3%ul )
f _ B COUE ¢ E
he(r) = 20\ ar 8~ “E5reE) (") “19)

It is shown in appendix B that under the condition (4.11), h%(r) has asymptotic
behaviour as r — o0

£ - Z‘. ﬁd_gt _1 kr — ) -1
hE(r)—2 5m dE ‘”hsm( o2hr — fm +26%) + O(r~ 1) + O(N(m). (4.15)
Since h%(0) = 0 (u(r) is the regular solution of (4.3)) and wg(r) is constant for
r € R, an integration by parts of (4.5) gives

4m [ ,fr—R
Té(wn)=“'ﬁ}; dr (

)hi;(r)
o (4.16)
= _%/0 drg'(r)hs(pr + R)

where g'(r) = dg(+)/dr. For R large enough we can insert in (4.16) the asymptotic
behaviour (4.15). After an integration by parts of the linear term in r and using
g(0) = 1, we obtain

f dr g'(r)sin(2kpr +2kR-€7r+‘)6 )

N 9_1: [m dr g'(r) (\0 (,,H. R) +O(N(pr + H)) . (4.17)

Since (pr+ R)~! < R™1, the last term is O(1/R) 4+ O(N(R)) for all p. Moreover,
after an integration by parts, we find that the fourth term in (4.17) is less than

({;) (@1 [ arigon) = o6 (418)
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uniformly with respect to R. Finally, the sum of the two first terms of (4.17) equals
(2m/hk) f;° drwg(r) and this proves (4.12).
We now see that

hm (FE(L"R)_ OL(wR))‘-—'h dE

p—vOO

(4.19)

for each E and ¢ fixed. Because of the smooth transition region (in the sense
kp > 1), there are no more reflections at the boundaries of the field and we obtain
the expected limit (3.6).

The common dwergent term (the first term of (4.12)) is a purely classical quantity.
It can be written as f ds wg(s/v), ie. the time needed by a classical particle of
velocity v = fik/m to cross the field region along its diameter, weighted by the
function wg.

It is worth noting that if wx(r) is assumed to be infinitely differentiable (i.e. g(+)
is infinitely differentiable with vanishing derivatives at r = 0), then the correction due
to the transition region (the fourth term of (4.17)) vanishes faster than any power of
the field gradient p~!. On the other hand, if one lets p — 0, wg approaches the
step function xp and one recovers from (4.17) the result (4.8} with oscillating terms.

The present analysis can be extended to potentials » which are not necessarily
rotation invariant. For this one can follow the method of [20], replacing the char-
acteristic function of the sphere by our wy (4.10). Then, one obtains the result of
the main theorem of [20] as R — oo, p -+ oo without using the somewhat artificial
spatial averaging procedure introduced there.

5. The spin scattering beyond the linear response

In this section, we consider the scattering of a neutral particle in a weak (but not
necessarily infinitesimal) field. To do this, we first study the scattering, at fixed energy
E > X and angular momentum £, by the potential v + Awp where wg is as in
(4.10). We shall show that in the limit B — 00, p — oo, the matrix elements SL(A)
factorize into a product of two terms, one due to the crossing of the region where
Awp acts and the other one due to the scattering by the potential v at energy E— A,
Equivalently, the effects of the potentials v and Awp become additive in the phase
shifts 65(X).

Proposition 2. Let wg(r) be defined as in (4.10). Assume that there exist ¢ > 0 such
that {* drrlv(r)} < co and for » > «, v(r) is twice continuously differentiable and
v(r), v (r), v"’(r) are O(x~"), n > 2. Then, for any fixed ¢, £ > 0 and A < E,
we have

o2
B = [ dr(s() =)+ 85, +O(RT)+06™) G
0
where he(r) = /2m(FE — Mwg(r)) and 65 are the phase shifts of the scattering

system (H, Hy+ v).
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Proof. Throughout all the proof we set R > a. Given £, A < E and ¢ > 0, there
exist R sufficiently large such that (we recall that 0 € wg(r) € 1)

12 e(e+1)

v(ry=v(r) + o— +Awp(r) < E—¢ r> R (52)

If » > R, we write the solution of (4.3) in the form (dropping now the indices £, F)
u(r) = Co(r}fu(r) + C_(7}_(7) ¢-3)
u'(r) = ik(r) (Co(r)fo(r) = C_(r}f_(r)) (>4

where v/'(r) = du(r)/dr,

hk(r) = /2m(E — () 2 V2me >0 (5.5

and f,(r) has the wkB form

fo(r) = ]:(1) exp (:i:i f; ds k(s)). (5.6)

It is not difficult to check that u(+} verifies (4.3) if and only if the functions C.(r)
obey the first-order differential system

Cilr) = C(7); (( ))exp(ipi’i/R dsk(s)) (5.7)
with initial conditions determined by the continuity of u(r) and w'(r}at r = R
CalR) = ${(K(R)ul ) 71 (KR () ). 6:8)

For r < R, we have Awy(r) = A, thus uw(r) = ub_,(r) is the regular stationary
soluuon of the radial equation with potential () and energy E — A. Hence it has
the asymptotic behaviour

u(R) = uby_\(R) = Asin(xkR — tx/2 + 65_\)+ O(R™Y) (5.9)
w(R) = (ub_,) (R) = Axcos(kR— Cr/2 4 65_,)+ O(R™) (5.10)

where ik = /2m(E — A} and A is a constant to be determined later. We observe
that, according to (5.2) and (5.5), onc has

E(r) = x(») + O(+™%) r2 R (5.11)

with x(R) = « and «(v) = k for r suflicicntly large (since wp(r) has compact
support). Combining (5.9), (5.10) and (5.11) in (5.8) gives

CL(R) = i.dé{sexp (:!:i (kR -5 + 55,3_,\)) +O(R™). (512
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Furthermore, it is shown in appendix C that for r > R

Ci(r) = C4(R) + O(R™Y) 4+ O(p™1). (5.13)

This implies that for » > R

u(r) = CL(R)fL(r) + C_(R}_(r})+ O(R™)+ 0(p™")  (514)

is, in fact, given by thc usual WKB approximation provided that R is sulficiently large
and that the field gradient is sufficiently small in the transition region. In view of
(5.6) and (5.11), f,(r) have the asymptotic behaviour

fi(r) = \/_exp(:l:l(kr-—kR+/ ds(n(s)—k)) + O(R™ ). (5.15)

Thus, for r > R, r sufficiently Jarge, (5.12), (5.15) and (5.14) lead to

u('r') = A\/% sin (k?‘—ﬂ-g- + (kv — k)R+j};wds(ﬁ(s)_k) + ég—,\)
+O(R) + O(s). (5.16)

The oompanson of (5.16) with (4.4) shows that A = \/ k/k . Moreover, since SL(X)
is continuous in A, we choose the determination of §5()) which is continuous in X
with 64£(x = 0) = 6% and conclude from (5.16) that (S 1) is true,

We see that the phase shifts have a well defined asymptotic behaviour (5.1) without
oscillations. This has to be contrasted with the case wg(r) = xg(r) (abrupt switching
on) which produces the phase shifts

§5(M) = —kR + arctan (% tan (H,R - (.’ + 65 A)) + O(R™Y). (5.17)

If one calculates 24 aéfé(/\)/az\[h[] from (5.1) and (5.17) respectively, one recovers
{4.12) and (4.8).

Expression (5.1) has the following interpretation: the Eisenbud—Wigner time delay
associated with the scattering of the particle by the potential v 4 dwp, e 7L(A) =
2R36L(A)/OE, is equal to the sum of two contributions

TE(N) = TH(A) + T, (5.18)

qon o [T ([ [Em
TE(A)_fO dv( = wn(r) = (5.19)

and Tf_, is the time delay due to the potential v alone at energy E — X Tt is
not hard to check that as [t — oo, rg()\) is the asymptotic form of the time delay
corresponding to the scattering of a classical particle by the potential Awg (7).
Expression (5.1) may also be compared with the standard wks phase shifts 21].
The difference is that here the semiclassical treatcment only applies to the transition

where
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region for Awp (because of its weak pradient), whereas the full quantum mechanical
scattering by the potential 1 is taken into account.
The main consequence of the result (5.1) is that, in the limit R — oc and

p — oo, the potential Awy has no effects on the scattering by v, except for the
energy shift £ — X and the additional classical time delay (5.19). This is because
the first factor in (3.1) is an overall phase depending only on the energy and thus
commuting with the momentum operator. More specifically, if F(p) is any function
of the momentum p on the energy shell (i.e. depending only on the angles p = p/|p|
of p with |p| = (2mE/A*)!/? fixed), the matrix elements of the asymptotic operator

lim (6, mISLO)Fg()Sg(NI¢,m') = lim 5" (\SEOANE mIFg(5)|€, m')
p—oo p—oo
= HCE 53010 | F(5)]€', m') (5.20)

converge to those due to the potential v alone. In particular, if » = 0, there 8 no
scattering at all and the cross section vanishes.

We now consider the scattering of a neutral particle of spin s. For each E and
£, Sf_r.;()\) ismowa (2s4+ 1) x (2s + 1) matrix, diagonal in the basis of eigenvectors

nf ¥ unth alemente L 72 A1) —s<m < s nhrained hy renlacineg A hy »» ) n
Sk “z’ FYALREL Wi il dilgd L)L \ rie I\J \ l'llls Q [N WIS RIg) WY ay I\fl’lu\-illlé Ehl U)’ 1 "l AU 1AL

(5.1). For a spin-3, we find accordmg to (5.1)
(Zi}out ()\) —_ eﬂ:lag sz)\)(Ei) (521)
with

of(wr, A) = agp(wr, A) +2(8 E+n\/'> - 653-h,\/2) +O(RN+0(p™) (522

doplar AV =2 [ dr (s (1) = ,() (5.23)
0

hry(r) = \/Qm(E:F (AM2)wp (). (5.24)

When there is no dispersion in energy, the spin vector (£} = ((X,)",(Z,)")
undergoes a rotation in the (x,y) plane of angle afg(wﬂ, A) which is the sum of
two terms. The first of these two terms, o p{wpg, A), diverges as R — oo and i the
rotation angle of the outgoing spin vector in the magnetic field when the scattering
potential ¢ is set equal to zero. Therefore, the difference

o of
Optnr/2 ~ OB_najn
AR

has a well defined limit as 2 — oo and p — oo which is the generalization of (4.19)
for a spin-; at fixed cnergy £ and (, for a cut-oft function given by (4.10). At the
first order in A, one recovers the Eiscnbud-Wigner time-delay and higher order terms
in A give access to the higher order derivatives of the phase shifts 65 with respect to
the energy.

However, if the incoming statc ¢ has some dispersion in cnergy (but with no
contributions below Afi/2), (5.21) has to be replaced by

+O(R™) +0(p™') (5.25)

ab(wrp,A) —agp(wr,A) = 2Ah

(£2)5(A) = (S4)" ] A E sl E)[Petiabten), (5.26)
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Since ok (wp, A) varies rapidly for large R, {£.)9“'(A) is now subjected to an
attenuation (for instance, an integration by parts of (5.26) gives [(£.)¢"(M\)] =
O(R~') as R — oc). This attenuation is due to fact that in the field region, the spin
up and down parts of the wave packet (relative to the field direction) have different
effective momenta /5ix 4, () (see (5.24)) and thus propagate at different speeds. This
produces a spatial splitting of the incoming wave packet which is the reason for
the attenuation. This effect has been discussed in the context of neutron beam
experiments [22]. It is easy to check using (5.26) that this attenuation is negligible if
vVmE-3AAR << 1 where A is the energy width of the wave packet which peaks
at about E.

All the results of sections 4 and 5 can be easily specialized to the one-dimensional
scattering problem. We define the cut-off function as in (4.10) with r = |z|, z € R. If
ihie poteniial is invariant under the refieciion z — —a, the scattering operator at fixed
energy is diagonal in the representation of even and odd functions of the momentum
fik. Then, £ = 0,1, where 0 corresponds to the odd functions and 1 to the even
ones. The phase shifts §%,(A) and 6L () are connected with the wansmission and
reflection coefficients by

e = T(A) = Rg(X) BN =T (M +Ru(A) (527

and the results of propositions 1 and 2 are the same for 6%(A) and S A).

In one dimension, it is possible to apply the wkB method of proposition 2 10 a
potential v which & not necessarily invariant under space reflection (but still keeping
the same form (4.10) of wy). Working now in the two-valued energy representation
specified by E and k/|%|, the S-operator of the scattering system ([, H, + /), on
the energy shell, is given by the following 2 x 2 unitary matrix

_(Tg R'g
Sp = (’RE . ) . . (5.28)

In (5.28) 75 and R are the transmission and reflection coeflicients for a particle
with energy £ coming from the left and R’y is the reflection coctlicient for the
particle coming from the right. The equivalent of proposition 2 is now that Sz(A),
A < E, is asymptotic to Ty (A} Sp_y a8 R — oo and p — oo, where T (A} =
exp (2i [, dr(x(r)~ k)} is the transmission coeflicient for the scattering system
without the potential v. Notice that [T, ()| = 1, ie. the potential Awg causes no
reflections. Since 7, {A) is a purc phase factor, we find that, at fixed energy E and
for a spin-, the length of the diffcrence of the spin vector in the (z,y) plane

(2R () = (2)5E ()]
ot .5'E+,\,:,/-_: - 51;-.\&/2
S E_XRfY Al E

= 2MA|(S)"
again has a well defined limit as [ — o0 and p — oo

+0(1)  (5.29)

6. Cencluding remarks

The scattering of a quantum mechanical particle by a (non-random) potential (here
v + Aw) is a fully coherent process; all interactions, wherever they take place, con-
tribute coherently to the wavefunction. By a rigorous quantum mechanical treatment
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of the full process (field and potential), we have shown that the spin clock agrees
with the (classic) Eisenbud-Wigner time delay, at fixed energy as well as for wave
packets, under the following conditions:

(i) one considers the average value of the total outgoing spin (i.c. summing up
the contributions of all scattering directions);

(ii) the magnetic field is switched on smoothly in space in a spherically symmetric
region;

(iri) one retains the linear response term in the field strength;

(iv) the field region is eventually extended to the whole space.

Under the same conditions (i), (ii) and (iv), we have also investigated the func-
tioning of the spin clock beyond the linear response regime. At fixed energy relevant
information can be obtained on finite-energy differences of phase shifts. When there
is some dispersion in energy, the outgoing spin magnitude is attenuated because of a
(Stern-Gerlach) splitting of the spin component waves inside the field region. This
confirms the view that the apparent pure spin rotation occurring in the linear re-
spons¢ should be interpreted as a coherent interference between the spin component
waves in the field region, rather than as a classical Larmor precession {see [22] for a
discussion of this point).

Conditions (i) and (iv) may also be dropped by performing a spin measurement
in a definite outgoing direction and/or considering cases where the magnetic field acts
only locally on some region of microscopic size.

It is certainly of interest to investigate what information can be obtained on
tunnelling processes from a partial spin measurement (for instance, in one dimension,
the spin associated with transmitted or reflected waves separately; see the comment
at the end of section 3). This aspect was not discussed in this paper but we shall
return to this point in further work in relation to the concept of ‘angular time delay’
(see for instance [23]).

If the magnetic field has a strictly local action in some region there will be, in
principle, quantum mechanical interferences due to the non-vanishing gradients at
the finite distance boundaries of this region. To what extent they can be disentangled
from the scattering waves due to the potential »+ has to be examined in each case.

The sojourn time also has a local character. As emphasized in [24] it i an ideal-
ized quantity obtained by a continuous observation in the limit of weak disturbance
of the system by the measurement procedure. In fact, the linear response of the scat-
tering system to an applicd ficld, as described in section 2, precisely provides such a
measurement. We understand then that the sojourn time also unavoidedly embodies
the physical consequences of the spatial switching on of the field specified by a choice
of the cut-off function w.

Many studies have been devoted 1o local tunnelling times (see for instance [1,
25] and references cited therein) but, in our opinion (and this is also a conclusion in
[1]), the Eisenbud-Wigner phase shift is the only concept of time delay intrinsically
attached to the potential v: it has to be a non-local quantity by the very nature of
quantum mechanics (a wave packet cannot have compact support for all times).

A final remark is in order. T our knowledge, in the present work as well as
in almost all the cxisting literature, the cut-off function w is always chosen to be
spherically symmetric (or reflection invariant in one dimension). The only exceptions
are the one-dimensional case [14] and the treatment of the trace Trrg of the time
delay operator [26]. A spherically symmetric cut-off has the advantage that it leads
to the expected result (the usual Eisenbud-Wigner phase shift) and facilitates the
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analysis (for instance a simple application of the WKB method of proposition 2 is
only possible with the radial ordinary differential equation). We think that the reason

for this choice is, in fact, more fundamental: if more general cut-off functions are
allowed the convergence (3.5) is no larger guaranteed [27).
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Appendix A

In this appendix, we establish the formula (2.6) for a class of spherically symmetric
potentials, We have from (2.3)

5 .
S350 = =zl (A () (A1)
with
AN -—-f ds VIA)wV,(A) (A2)
I A ()< 2 fleo]) (A3)

One proceeds with the following steps:

(i) the strong limits (2.1) hold on L*(R3) uniformly with respect to A (|A] < A%

(ii) there exists a dense set D C L2?(R?%) such that S{”m AN _(Ne =
A(X)Q_ (M), uniformly with respect to A, on the set _(A)¢, @ € D, where
A(A) = A () is given by the integral (A.2) with infinite integration range;

(iii) sz-Iim A(MNQ_ (M = A(MQ_(A)w, ¢ € D, uniformly with respect to

— 00

A

The assertions (i) and (iii) imply that, for y» € L*(R®) and » € D, the sequence
of derivatives

8. i
Hm —— (4, S,(A)e) = —+ lim (82, (M), A,(NQ_(A)e)
t—c0 & firmoot T ' (A.4)

i
= —3(#, 2L (N AN (N)e)
converge uniformly with respect to M. This justifics the exchange of the infinite time

limit with the X dcrivative and gives (2.6) when A is set equal to zero in (A.4). Point
(i) follows fram the standard Cook estimate

+ o0
1220 = Vel | [ ds ok At n\

Fo0 +eo
<[ mevet|+ x| [ as nwve (AS)
H t
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which is obviously uniform with respect to A, (M| € Ay. To establish (i), we show that
(A, (XM= A, (A))Q_(MN)w, t; > t), ¢ € D, form a strong Cauchy sequence uniform
in A. We omit the variable A from now on, remembering that the total potential is
v + Aw. We use the inequalities

II (Afg - At; )Q ¥ Ii

IR
31

-1, ta
<[ Tasieviael+ [Tasfovael
1

ta

iz
+ [Tas et Sl il [ ds (e - Ul @8
Ty

121

We note that the integrability of the functions occurring in (A.6) is precisely the

mnditaan under which the existence of the time delay is proven in [12], ie, it holds if

= {@ € L}(R3); (k) = [ d3ze'*®(x) is three times continuously differentiable
wuh compact support and no support in a neigbourhood of k = 0}, v is spherically
symmetric and v(r) = O{r~%/2-%) (we recall that w has compact support). The
analysis of [12] relies on the Cook estimate (A.5) and on the finitness of the moments

n
v

(1]

L -
T <.

/A
N

R
(AT

Both estimates (A.5) and (A.7) arc uniform with respect to A, and this completes the
proof of (ii). For (iii), we have with (A.3)
(AR, = A2 el <l (A~ A2_e |l + AT (2 - 200

<H{A, - A el F2 1wt (- -2 )il

The first term in the right-hand side of (A.8) tends to zero uniformly with respect to
A by (ii). So does the second term since by the Cook estimate || (2_, ~ Q_ ) ||=
O(t~!1=%), ¢ € D, uniformly with respect to A (see [12]). This completes the proof
of (2.6) for v € D and for spherically symmetric potentials v decreasing at infinity
more rapidly than »—%/2. The prool could be extended to non-spherically symmetric
potentials by the methods of {13].

Appendix B

We give here a proof of (4.15) in section 4. Using the method of the variation of
constants it is not diflicult to show that the solution of (4.3} with asymptotic behaviour
(4.4) obeys the Volterra-type integral equation (see [28] for the method)

ik, r) = ub(k, ) + wl(k,r) ik = VoamE (B.1)
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with
uf(k,7) = cos 6'(k)j (kr) + sin §(k)ny(kr) (B.2)

ul(hk,r) = fﬁ—"; rm ds Gi(r,s)u(s)u'(k,s) (B.3)

e(ry8} = ny(ks)j(kr) ~ ny(kr)j,(ks) (B.4)

where j,(z) and n,(z) are the usual Riccati-Bessel and Riccati-Newmann functions
with asymptotic behaviour

Je(z) =sin(x - €n/2) 4+ O(1/x)

(B.5)
nz) =cos(x— {x/2)+ O(1/z).
Inserting (B.1) into (4.14) gives (dropping the indices £ and £)
Ao_a(k,r)
1
_ 1 [ Bu, Bug 8? ug
h{k,r) = Z_ﬁ (—31_ N °arak (k,r). (B.6)

We first derive the asymptotic behaviour of A, ,(k,7), noting that, under the con-

dition (4.11), the phasc shifts §(k) are continuously differentiable for k& # 0 (see
[28]). One obtains, setting « = k»r,

“k%nTTwn@+xwu—fnﬂ+fuuuﬂ

+sin” 6(k)( dé(k)(n_} nj')(z +a:(n"n—n'z)(.’c)-l—n'(sc)n(m))

Ann(k )= cos?® 6(&)(»&

+ sin §(k) cos 6( &) x(j"n — j'n")2)
’ n ()

+ (0" = w'§')(@) + (30 + n')(@) ®.7)
Using the following properties of the spherical Bessel functions
J(2) = ~j(z)} + O(2™%)  w(x) = —n(z) + O(z"?)
j’(;t'):n(;r)—{-O(:t:"“’) n'(z) = —j(x) + O(z™%)
n*(2) 4 j*(z) = 1 + O(z™)
(B.8)
(B.7) becomes
-;—kAU'O(k,r)_%%-i-g—tl]k( (k) cos §(k)+n(ker) sin 5(k))(n(k7) cos 6(k)
— H2)siné(k)) + O(r~")
1 hkdsS
T 22m dE
+ g‘ﬁslﬂ(vm — (w4 265) + O(r™1) (B.9)
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where the last equality follows from (B.5). This is the expected asymptotic behaviour
of h%(r). To complete the proof of (4.15) it remains to show that under the condi-
tions (4.11) the three last terms in the sum (B.5) do not contribute as r» — co. As
a consequence of the fact that the spherical Bessel functions are uniformly bounded
away from the origin, we have for k # 0 and r > 1

d?uf
drdk
and also, solving the integral equation (B.1)-(B.4) by iteration,

ul
ubth ), D0k ) = 0(1) Dk, T80y = o) (B.10)

uf(k,r) = O(1) %(k r) = O(r). (B.11)
Then one deduces from {B.3) that
ut o2
ut(k,r), %le(k,r) =0 (/ ds |1/(s)|) (B.12)
dut d?u o ‘
d—kl(k, ), P di(k =0 ([ dss|u(s)]). (B.13)

(B.12) and (B.13) imply that all the terms A, ;(k,7), («,3) # (0,0) are O(N(r)).

Appendix C

We indicate here a proof of (5.13). For this we write (5.7) as an integral equation

Cr)=Cr(R)+ AL(r) (C.1

where
1—1 " K'(s) leRska

840 = 5 [ ds T Oy s)eTH I k) €2

An integration by parts of (C.2) gives
_ 1 K(s) ifLds' L(s)
A:‘:(T')— 4 k’)( )C ( )e:Fz R
1 " k"(S) 20 fAds’ k(s
3 [ o (g este )) A HE. ©3)

We know that the regular solution w(r) of (4.3) and its derivative u'(r} are bounded
(see for instance appendix B); the definitions (5.3) and (5.4) imply that the same is
true for C (r) and C_(r). Then, using (5.5), it is a simple matter to check that for
sz R

< M|y (s)] (C.4)

< My (Y () + My [v"(s). (C.5)
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To obtain (C.5) we have taken into account that, by (5.7), €’ (s) has the same bound
as (C4). Introducing (C.4) and (C.5) into (C.3) gives, after integrating (v'(s))? by
parts,

oo

|AL(r)] < M, sggl*f’(b‘)l + M ; ds|v"(s)l. (C.6)

In view of (4.10} and with the conditions assumed for the potential », one has the
estimates

sup [V (s}<p™? sup l9'(s)| + O(R") + O(R™?) (C.7)

/ dsh"(snsp-lfmds|g"(s)|+0(R-"+1)+O(R-3) (C8)
R 0

implying that (5.13} holds when 5 > 2.
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